Ref. T1/10

To: All IMO Members
United Nations and Specialized Agencies
Intergovernmental Organizations
Non-governmental Organizations in Consultative Status

Subject: Communication from the Government of the Netherlands

The Secretary-General has the honour to transmit herewith, for the attention of all concerned, a communication received from the Government of the Netherlands regarding Guidelines for the construction and operation of dredgers assigned reduced freeboard in accordance with Article 6(3) of the International Convention on Load Lines, 1966.
Circular letter No. 2285

Ministry of Transport,
Public Works and Water Management

To
The Secretary-General of IMO
4, Albert Embankment
LONDON SE1 7SR
England

Directorate-General for Freight Transport
Directorate Transport Safety

Contact
H. Vermeer

Date
3 January 2001

Our reference
G/V-01/000327

Subject
International Convention on Load Lines, 1966

Dear Mr Secretary-General,

On behalf of the Netherlands Administration please find enclosed a communication concerning "Guidelines for the construction and operation of dredgers assigned reduced freeboards" in accordance with Article 6(3) of the International Conference on Load Lines, 1966.

It should be emphasised that the Guidelines represents the outcome of a joint effort of a Working Group consisting of interested parties from Belgium, France, Germany, the Netherlands and the United Kingdom as reflected in the Preamble of the Guidelines.

It would be appreciated if this information could be distributed among the Members and Organisations.

Yours sincerely,

DIRECTOR FOR TRANSPORT SAFETY,

[Signature]

C.A. Dubbeled

Safety Management Division
P.O.BOX 20904, 2500 EX THE HAGUE
Artillerie, Nieuwe Uitleg 1, 2514 BP The Hague
Internet www.minvenw.nl/dgg/dgg

Telephone +31 70 351 6171
Telefax +31 70 351 1598
GUIDELINES FOR THE CONSTRUCTION AND OPERATION
OF DREDGERS ASSIGNED REDUCED FREEBOARDS

Preamble

Dredgers are typically used for clearance or maintenance duties in ports, docks and navigation channels; for reclamation duties in the reclamation of land and beach replenishment; and for the recovery of materials for the building and civil engineering industries. Early development of this trade did not usually cross national boundaries, and practices were therefore governed by diverse national standards. The current Guidelines are the outcome of work by a “Joint Working Group on dredgers operating at Reduced Freeboard”. This Group represented classification societies, the dredging industry, the shipbuilding industry and regulatory bodies from Belgium, France, Germany, the Netherlands and the United Kingdom. The Guidelines have been developed to provide a harmonised standard for construction and operation of dredgers on the basis of overall safety equivalence to the International Convention on Load Lines, 1966. The Guidelines are intended for operations in or between the territorial waters of the participating Administrations. They may also be used for operations outside such geographical limits where no overriding requirements prevail. Members of the Joint Working Group have agreed to meet on a regular basis to review the Guidelines and keep them up-dated against any new development within the areas covered by the Guidelines. Members of the Joint Working Group are invited to communicate the Guidelines to any party engaged in or regulating dredging activity.

Contents

1. General
1.1 Purpose
1.2 Application
1.3 Definitions
2. Load Line Marks
3. Freeboard
5. Construction
6. Stability
6.1 Intact Stability
6.2 Damage Stability
7. Equipment
7.1 Dumping System
7.2 Draught Gauges
7.3 Dredge valves emergency closing
7.4 Wave height information
8. Information to the Master
9. Exemption
10. Equivalents
11. Surveys
12. Certificates
1 General

1.1 Purpose

The purpose of these Guidelines is to specify design criteria, construction and survey standards, and operational safety measures for dredgers permitting safe operation at freeboards less than the minimum freeboards prescribed by the Convention.

1.2 Application

These Guidelines apply to dredgers of 500 GT and above, the keels of which are laid or which are at a similar stage of construction on or after 5 August 2000. An existing dredger of 500 GT and above, may be assigned a reduced freeboard calculated in accordance with these Guidelines provided the ship complies with all the conditions of these Guidelines.

1.3 Definitions

For the purpose of these Guidelines the following definitions apply:

A dredger is a self-propelled vessel capable of loading dredgings at sea and fitted with bottom doors or similar means for discharging or dumping the dredgings to sea. Dredgings are generally self loaded, and are carried in one or more integral hoppers to the place of discharge. Similar units such as (non self-propelled) hopper barges and stone dumping vessels etc., which are capable of discharging their cargo in a quick and efficient manner, may be treated as dredgers.

Dredgings are materials consisting of soil, sand, gravel, or rock with a bulk density up to 2200 kg/m3.

Cargo means dredgings and entrained water.

Guidelines means Guidelines for the construction and operation of dredgers assigned reduced freeboards.

2 Load Line Marks

In addition to the load line mark and load lines prescribed by the applicable provisions of the Convention, a dredging load line and dredging fresh water load line, corresponding to the reduced freeboard assigned in accordance with the provisions of these Guidelines, shall be permanently marked on both sides of the dredger, extending aft and forward respectively of a vertical line joining the two. The vertical line shall be placed 540 mm aft of the centre of the load line mark. The vertical line and dredging load lines shall be 25 mm in width and the dredging load lines 230 mm in length. The dredging load line is indicated by the upper edge of that line to be marked DR, and the dredging fresh water load line by the upper edge of that line to be marked DRF. The lines should be painted in a colour contrasting with the colour of the hull. If the dredger does not fall under the scope of the Convention the Dredging Mark is marked in the above mentioned format in addition to the Load Lines Marks prescribed by the National Regulation, if any.
3 Freeboard

3.1 The dredger may be assigned a reduced freeboard for loading, carrying or discharging dredgings. The reduced freeboard is the summer freeboard calculated for a type B ship in accordance with reg. 40 of the annex to the Convention, reduced by 2/3 of the summer freeboard which is calculated without reg. 32 (deck line) and 39 (bow height) of the annex to the Convention taken into account.

3.2 The minimum bow height at the dredging load line is the bow height provided by reg. 39 of the annex to the Convention reduced by the reduction as calculated in 3.1.

3.3 The minimum dredging freeboard in freshwater of unit density shall be obtained by deducting from the minimum dredging freeboard in salt water:

\[\Delta/40 \text{T centimetres} \]

where \[\Delta = \text{displacement in salt water in tons at the dredging load waterline} \]
\[T = \text{tons per centimetre immersion in salt water at the dredging load waterline} \]

4 Specific Load Line Provisions

4.1 No bulwarks shall be fitted on the freeboard deck abreast of any hopper which is an open hopper.

4.2 A safe access from the fore end to the aft end of the dredger shall be provided for the protection of the crew. The passage shall comply with the applicable provisions of the International Association of Classification Societies in force. Where the access is located above the freeboard deck it shall be at least as high as the difference between the summer freeboard and the dredging load line freeboard.

4.3 Means for overflow of process water shall be arranged as follows:

a. over the spill-out edge of the hopper coaming; or
b. through overflow ducts or spillways in the hopper walls; or
c. through adjustable overflows.

The overflow arrangements prescribed at (b) and (c) shall have an area of at least:

- \[0.7(L_h)^2/1000 \text{m}^2 \], where \(L_h \) is the maximum length of the hopper in metres, or
- \[Q/3 \text{m}^3/\text{sec} \], in which \(Q \) is the total maximum water capacity of the suction dredge pumps in \(\text{m}^3/\text{sec} \); whichever is greater.

4.4 A suitable hopper geometry shall consist of:

a. the height above the dredging load line of the spill-out edge of the hopper, exceeding at all points the minimum bow height value; or
b. freeing ports of sufficient area to ensure rapid outflow of sea water, the area of such ports being at least equivalent to the area required by regulation 24(1) of the annex to the Convention when hopper length and height above overflow ducts or spillways are substituted for bulwark length and height above deck; or
c. closed hopper.
Subject to suitable hopper geometry, the content of the hopper at the dredging load line may be assumed to be cargo up to the lower edge of the overflow arrangement, and when dredging dense cargoes may be assumed to consist of a layer of seawater on top of the cargo up to the lower edge of the overflow arrangement; in all other cases the layer of seawater on top of the cargo shall be assumed to extend to the spill-out edge of the hopper.

4.5 Regulations 21 (Cargo Ports and other similar Openings), 22 (Scuppers, Inlets and Discharges) and 23 Side Scuttles) of the Annex to the Convention, shall be applied as if references to the uppermost load line in regulation 21, to the summer load line in regulation 22 and to the load waterline in regulation 23 were references to the dredging load line.

The minimum heights of air pipes and minimum coaming heights of ventilators above deck, in the case of air pipes and ventilators fitted on the freeboard deck, as prescribed in Regulations 20 (Air Pipes) and 19 (Ventilators) of the Annex to the Convention, shall be increased by the difference between the summer freeboard and the freeboard at the dredging load line.

5 Construction

The structural strength of the dredger operating at the dredging load line shall be sufficient. Operation at the dredging load line may therefore be restricted according to sea state or geographic limit.

A geographic operational limit resulting from structural strength requirements may normally be given as:

- dredging within 8 miles from shore
- dredging within 15 miles from shore or within 20 miles from port
- dredging over 15 miles from shore

The Administration and/or the Classification Society may however assign a geographic operating limit different from the above.

6 Stability

6.1 Intact Stability

The intact stability of the ship is to be sufficient to comply with the criteria indicated in 6.1.3 for each of the loading conditions of 6.1.2 in accordance with the calculation method described in 6.1.1.

6.1.1 Calculation Method

The calculation of the righting lever curves shall take into account:

- the change of trim due to heel
- in the case of an open hopper the inflow of seawater or outflow of liquid cargo and seawater over the spill-out edge of the hopper,
- the inflow of seawater through any overflow, spillway or freeing port, either at the lower edge of the opening or at the cargo/seawater interface, whichever is the lower.
- outflow of the cargo only occurs over the spill-out edge of the hopper where this edge has a length of at least 50% of the maximum hopper length at a constant height above the freeboard deck on both sides of the hopper.
The intact stability computer program shall be acceptable to the Administration and the Classification Society.

6.1.2 Loading Conditions

The following loading conditions should be assumed for the calculations of the intact stability.

6.1.2.1 State of cargo: liquid

The calculations are to be carried out for each of the loading conditions a) and b) considering:

- the ship loaded to the dredging load line,
- the cargo as a liquid

a) the hopper(s) fully loaded with a homogeneous cargo of density ρ_m up to the spill-out edge of the hopper:

$$\rho_m = \frac{M_1}{V_1}$$ with:

- $M_1 =$ mass of cargo in the hopper when loaded at the dredging load line, in kg.
- $V_1 =$ volume of the hopper at the spill-out edge of the hopper, in m^3

The stability calculations are made for the conditions of stores and fuel equal to 100% and 10% and an intermediate condition if such a condition is more critical than both 100% and 10%.

b) the hopper(s) filled or partly filled with a homogeneous cargo of densities equal to 1000, 1200, 1400, 1600, 1800, 2000 kg/m3.

When the dredging load line cannot be reached due to the density of the cargo, the hopper is to be considered filled up to the spill-out edge of the hopper.

The stability calculations are made for the condition of stores and fuel that is the most critical to meet the stability criteria in the stability calculations for density ρ_m as described in a).

6.1.2.2 State of cargo: solid

The stability calculations are to be carried out for each of the conditions a) and b) considering:

- the ship loaded to the dredging load line
- the cargo as solid

a) the hopper(s) fully loaded with a homogeneous cargo of density ρ_m up to the spill-out edge of the hopper, as calculated in 6.1.2.1 a).

The stability calculations are made for the conditions of stores and fuel equal to 100%, 10% and an intermediate condition if such a condition is more critical than both 100% and 10%.

b) the hopper(s) filled or partly filled with a homogeneous cargo of densities equal to 1400, 1600, 1800, 2000, 2200 kg/m3 which are greater than ρ_m.
The stability calculations are made for the condition of stores and fuel that is the most critical to meet the stability criteria in the stability calculations for density ρ_m as described in a).

c) for dredgers with bottom doors or similar means at port side and at starboard side, an additional calculation is to be made for asymmetric discharging as described below:

The dredger is assumed to be loaded to the dredging load line with solid cargo of a density equal to 1900 kg/m3; when discharging, 20% of the total hopper load is assumed to be discharging only at one side of the longitudinal centre line of the hopper, horizontally equally distributed at the discharging side.

In this situation:
- the angle of equilibrium should not exceed 25°
- the righting lever GZ within the 30° range beyond the angle of equilibrium should be at least 0.10 m
- the range of stability should not be less than 30°

6.1.2.3 No cargo.

Stability calculations are to be carried out for the hopper(s) with no cargo, the bottom dumping system being open to sea, and with stores and fuel at each of 100% and 10% and an intermediate condition if such a condition is more critical than both 100% and 10%.

For split hopper dredgers, an additional stability calculation is to be made in split hull configuration, with stores and fuel at each of 100% and 10% and an intermediate condition if such a condition is more critical than both 100% and 10%.

6.1.3 Intact Stability Criteria

The dredger shall meet the following intact stability criteria in the conditions of loading (excepting asymmetric discharge) stipulated in 6.1.2:

- The area under the righting lever curve shall not be less than 0.07 m.rad up to an angle of 15° when the maximum righting lever GZ_{max} occurs at 15° and 0.055 m.rad up to an angle of 30° when the maximum righting lever GZ_{max} occurs at 30° or above;
- Where the maximum righting lever GZ_{max} occurs at angles of between 15° and 30°, the corresponding area under the righting lever curve shall be $0.055+0.001(30°-\theta_{\text{max}}^{**})$ m.rad;
- The area under the righting lever curve between the angles of heel of 30° and 40°, or between 30° and θ_f^* if this angle is less than 40°, shall not be less than 0.03 m.rad;
- The righting lever GZ shall be at least 0.20 m at an angle of heel equal to or greater than 30°;
- The maximum righting lever GZ_{max} shall occur at an angle of heel not less than 15°; and
- The initial metacentric height GM_0 as corrected for the free surface effect of tanks and hopper(s) containing liquids, shall not be less than 0.15 m.

* θ_f is the angle of heel, in degrees, at which openings in the hull, superstructure or deckhouses which cannot be closed weathertight immerse. In applying this criterion, small openings through which progressive flooding cannot take place need not be considered as open.

** θ_{max} is the angle of heel, in degrees, at which the righting lever curve reaches its maximum.
6.1.4 Weather Criterion

6.1.4.1 The dredger shall comply with the weather criterion of the IMO Code on Intact Stability (A.749(18)) (Chapter 3.2) at the summer load line taking into account the following loading condition:

- state of the cargo: liquid
- stores and fuel: 10%
- hopper(s) loaded with a homogeneous cargo up to the spill-out edge of the hopper where the density of such cargo equals or exceeds 1000 kg/m³; where this condition implies a lighter cargo than 1000 kg/m³ the hopper is considered to be partially filled with a cargo of density equal to 1000 kg/m³.

In addition to the weather criterion requirement at the summer load line, the dredger shall comply with the weather criterion of the IMO Code on Intact Stability (A.749(18)) (Chapter 3.2) at the dredging load line, assuming a reduced wind pressure of $P = 270 \text{ N/m}^2$.

6.2 Damage Stability

Part B-1 of Chapter II-1 of SOLAS 1974 as amended by MSC.47(66) and as further amended and modified by 6.2.1, 6.2.2 and 6.2.3 of these Guidelines, shall be complied with.

6.2.1 Calculation Method

a) The calculation of the righting lever curves shall take into account:

- the change of trim due to heel.
- in the case of an open hopper the inflow of seawater or outflow of liquid cargo and sea water over the spill-out edge of the hopper.
- the inflow of seawater through any overflow, spillway or freeing port, either at the lower edge of the opening or at the cargo/seawater interface, whichever is the lower. Adjustable overflows operated from the navigation bridge, may be considered to be located at the highest position.
- outflow of the cargo only occurs over the spill-out edge of the hopper where this edge has a length of at least 50% of the maximum hopper length at a constant height above the freeboard deck on both sides of the hopper.
- the sliding of the cargo surface in the hopper, in transverse and longitudinal direction according to the following shifting law:

The cargo surface is assumed to be plane, and

\[
\theta_r = \begin{cases}
\theta_g & \text{for } \rho \leq 1400 \text{ (liquid cargo)} \\
\theta_g(2000 - \rho)/600 & \text{for } 1400 < \rho < 2000 \text{ (sliding cargo)} \\
0 & \text{for } \rho \geq 2000 \text{ (solid cargo)}
\end{cases}
\]

with

- \(\rho\) [kg/m³] cargo density
- \(\theta_r\) [degrees] shifting angle of the cargo surface
- \(\theta_g\) [degrees] angle of heel or angle of trim
b) The damage stability calculations shall take into account all the possible progressive floodings. A progressive flooding is an additional flooding of spaces interconnected with those assumed to be damaged.

Such additional flooding may occur through openings or pipes as indicated in the following conditions:

internal progressive flooding via:

- pipes and connected valves which are located within the assumed damage, where no valves are fitted outside the damage zone,
- pipes, even if located outside the damage zone, where all the following conditions apply:
 - the pipe connects a damaged space to one or more intact spaces
 - the pipe is below a damage waterline at all points between the connected spaces
 - the pipe has no valves between the connected spaces
- all internal doors other than
 - remotely operated sliding watertight doors
 - watertight access doors required to be normally closed at sea

external progressive flooding via:

- external openings where a damage waterline, taking into account sinkage heel and trim, immerses the lower edge of the sill or coaming and where the openings are not fitted with watertight means of closure. Such non watertight openings include air pipes whether or not fitted with automatic weathertight closure, ventilators, hatch covers whether or not fitted with weathertight means of closure. Openings which may be assumed watertight include manhole covers, flush scuttles and small watertight hatch covers which maintain the high integrity of the deck, side scuttles of the non opening type.

When progressive flooding may occur, the additional flooding of spaces which were not previously assumed to be damaged, is to be considered for the damage stability calculations.

However, major internal progressive flooding when the ship cannot survive the additional flooding, is not permitted. In such a case, arrangements are to be provided to limit the progressive flooding.

c) The damage stability computer program shall be acceptable to the Administration and the Classification Society.

6.2.2 Loading Conditions

6.2.2.1 The attained subdivision index A_U is to be calculated for the unloaded draught d_u and corresponding trim, assuming the dredger is loaded with 50% stores and fuel, no cargo in the hopper(s), and the hopper(s) in direct communication with the sea.

6.2.2.2 The attained subdivision index A_L is to be calculated for each cargo density defined in a) and b) assuming the dredger is loaded at dredging load line d_L, with 50% stores and fuel.

The damage stability calculations are to be performed taking into account the initial trim of the dredging load line and an assumed permeability of the cargo filled hopper space of 0% and a permeability of the space above the cargo equal to 100%.
a) the design density ρ_d corresponding to the dredging load line where:

$$\rho_d = \frac{M_2}{V_2}$$

M_2 [kg] mass of cargo in the hopper when loaded at dredging load line with stores and fuel at 50%.

V_2 [m3] volume of the hopper at the highest overflow position

b) each density ρ_i greater than ρ_d, defined by:

$$\rho_i = 2200 - i \cdot 200 \text{ where } i = \{0, 1, 2, 3...6\}$$

6.2.3 Damage Stability Criteria

The dredger shall comply with the following criteria:

- $A \geq R$ for each cargo density defined in 6.2.2.2
- $A_U \geq 0.7R$
- $A_L \geq 0.7R$ for each cargo density defined in 6.2.2.2

where Required Subdivision Index $R = (0.002+0.0009L_s)^{1/3}$ for $L_s \geq 100$ m

Required Subdivision Index $R = 1 - \frac{1}{1+(L_s/100)(R_0/(1-R_0))}$ for $L_s < 100$ m

with R_0 is the value of R calculated in accordance with the formula $R = (0.002+0.0009L_s)^{1/3}$

L_s [m] = subdivision length of the ship

Attained Subdivision Index $A = 0.5(A_U + A_L)$

A_U = attained subdivision index at unloaded draught d_u

A_L = attained subdivision index at loaded draught d_L and cargo densities defined in 6.2.2.2

7 Equipment

7.1 Dumping System

The cargo dumping system shall be capable of discharging the cargo by gravity, such that the dredger shall increase its freeboard from the dredging load line to the summer load line within 8 minutes using normal operation of the dumping system.

Emergency devices, controlled from the navigating bridge, shall be fitted so that the discharge of cargo is also possible in case of failure of the main electric power supply and/or the main hydraulic unit and/or single failure of the normal control systems.

Means of overflow and spillways shall not be regarded equivalent to a cargo dumping system.

7.2 Draught Gauges

An accurate draught indicator, capable of showing the corresponding position of the dredging draught, shall be fitted at the navigating bridge.

This draught indicator shall also be capable of providing a record of draught as a function of time.

It shall be acceptable to the Administration.
7.3 Dredge valves emergency closing

Emergency closing devices shall be provided for dredge valves in piping systems penetrating the shell below the freeboard deck and which are normally open when loading cargo by dredging. The emergency closing devices shall be operable from the navigating bridge. They shall be capable of operation in case of failure of the main electric power supply and/or the main hydraulic unit and/or single failure of the normal control systems.

7.4 Wave height information

During operations at dredging load line in operational areas defined by a limiting significant wave height, the master shall be provided with meteorological information and a forecast of the relevant seaway condition in terms of significant wave height. Where such information may not be obtained a wave measuring system, acceptable to the Administration, shall be used.

8 Information to the Master

The master shall be provided with written information, which may be supplemented by other media, as follows:

8.1 Sufficient information, in a format approved by the Administration, to enable the master to arrange for the loading and ballasting of the dredger so as to avoid the creation of any unacceptable stresses in the ship’s structure. The information shall define any sea state restrictions in terms of maximum significant wave height when operating at dredging load line.

8.2 Sufficient information, in a format approved by the Administration, to enable the master by rapid and simple means to ensure compliance with the intact and damage stability requirements of this Guidelines. The following items shall be included:

- Hydrostatic data for a range of draughts from lightship to dredging load line.
- Tank and hopper filling calibrations detailing volumes, centroids and free surface inertia’s, and including the volumes of hoppers above spillways.
- Righting lever curves for the loading conditions as specified in section 6.1.2 for each of the specified densities.
- The particulars of those loading conditions showing the fulfilment of the criteria in section 6.1.3 of the Guidelines.
- A summary of the required and attained subdivision indices resulting from the probabilistic damaged stability calculations in accordance with section 6.2 of the Guidelines.
- Relevant information for the master for which damage cases of flooding of main compartments the dredger will remain afloat at dredging draught and at unloaded draught, described on a wheelhouse poster and derived from the calculations made in accordance with the Guidelines.
- Instructions concerning the closure of watertight doors and valves.
- Instructions concerning the operation of cross-flooding arrangements where fitted.
- Instructions on maintaining dry bilge’s in void spaces.
- All other data and aids which might be necessary to maintain stability after damage.
Note: A curve of minimum operational metacentric heights (GM) against draught or of maximum allowable vertical centres of gravity (KG) against draught is not required if the dredger meets the relevant intact and damage stability requirements for all possible loading conditions as defined in paragraph 6.1.2.

8.3 Information on the adjustment of the overflow systems in order to avoid submergence of the dredging load line and to assure compliance with the intact stability requirements.

8.4 Clear instructions for the operation of the dumping system, the dredge pumps and the dredge valves in case of emergency. A copy of these instructions shall be permanently posted at the navigating bridge.

8.5 Clear instructions on sea state limitations to be observed and on procedures with regard to wave height prediction.

8.6 Plans showing clearly for each deck and hold the boundaries of the watertight compartments, the openings therein with their means of closure and position of any associated controls, and the arrangements for the correction of any list due to flooding. Such plans shall also be made available to watchkeeping officers of the dredger and shall be permanently exhibited or readily available on the navigating bridge.

9 Exemption

The dredger shall be exempted from the requirement that the appropriate seasonal convention load line is not submerged, when operating at the dredging load line in accordance with these Guidelines, in an area determined in respect of that dredger by its flag administration. Such exemption shall be deemed to be granted in accordance with Article 6(2) of the Convention.

10 Equivalents

10.1 Where these Guidelines require that a particular fitting, material, appliance, apparatus or type thereof should be fitted or carried, or that any particular provision should be made, or any procedure or arrangement should be complied with the Administration may allow any other fitting, material, appliance, apparatus or type thereof to be fitted or carried, or other provision made, or other procedure or arrangement complied with if it is satisfied by trial thereof or otherwise that such fitting, material, appliance, apparatus or type thereof or such provision, procedure or arrangement is at least as effective as that required by these Guidelines.

10.2 When an Administration allows any substitution under paragraph 10.1, it should communicate for the information of the participants to the agreement for the construction and operation of dredgers assigned reduced freeboards, full particulars together with a report on the justification for such allowance.

10.3 The Administration shall allow any fitting, material, appliance, apparatus or type thereof, meant in par. 10.1, which is rightfully produced or put upon the market in a Member State of the European Union or in a State Party to the Agreement on the European Economic Area and which meets equivalent technical requirements as those required by these Guidelines.
11 Surveys

If the dredger holds an International Load Line certificate the scope of surveys carried out in accordance with the Convention shall include equipment, arrangements, load line marks and information to the master required by these Guidelines.
If the dredger does not hold an International Load Line certificate surveys shall be carried out in accordance with flag administration requirements.

12 Certificates

12.1 Dredgers, under the scope of these Guidelines, engaged on international voyages shall hold a valid International Load Line certificate as required by Article 16 of the Convention and an International Load Line Exemption certificate in addition to all other relevant statutory certificates required for international voyages.

12.2 Dredgers, under the scope of these Guidelines, engaged solely on national voyages may be issued with national certification, provided that in the case of ships to which the Convention would apply if they were engaged on international voyages, and which comply with that Convention, an International Load Line certificate and International Load Line Exemption certificate may be issued.